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Abstract: In this study, we developed a glucose fiber sensor incorporating heterodyne interferometry
to measure the phase difference produced by the chemical reaction between glucose and glucose
oxidase (GOx). Both theoretical and experimental results showed that the amount of phase vari-
ation is inversely proportional to glucose concentration. The proposed method provided a linear
measurement range of the glucose concentration from 10 mg/dL to 550 mg/dL. The experimental
results indicated that the sensitivity is proportional to the length of the enzymatic glucose sensor,
and the optimum resolution can be obtained at a sensor length of 3 cm. The optimum resolution of
the proposed method is better than 0.6 mg/dL. Moreover, the proposed sensor demonstrates good
repeatability and reliability. The average relative standard deviation (RSD) is better than 10% and
satisfied the minimum requirement for point-of-care devices.

Keywords: enzymatic glucose sensor; no-core fiber; heterodyne interferometry

1. Introduction

The Centers for Disease Control and Prevention (CDC) released the latest scientific
data on diabetes in the United States in 2020, showing that about 10% (29.1 million) of
the population of the United States has diabetes. The report also noted that the cost of
diabetes-related treatment in the United States in 2012 was estimated at approximately
$245 billion [1]. The International Diabetes Federation announced that diabetes continues to
be a growing health burden in low- and middle-income countries, with 592 million people
living with diabetes in 2035, twice as many as in 2013 [2]. Numerous clinical studies have
confirmed that controlling lower blood glucose levels can reduce risk factors for cardiovas-
cular disease, and that self-monitoring of blood glucose levels can be effectively performed
using commercial blood glucose meters. Guidelines from the National Institutes of Health
(NIH) recommend that patients with type 2 diabetes typically perform self-testing before
meals, after meals, and before bedtime [1,3]. Therefore, measuring glucose concentration
with a blood glucose meter is essential to reduce the costs associated with diabetes.

Blood glucose concentration measurement methods can be divided into non-invasive
methods [4–6] and invasive methods [7–21]. While invasive methods do not provide
painless measurements, these methods can avoid individual patient differences (including
race, skin color, skin composition, skin thickness, and complex blood components) and
increase the reliability of clinical diagnosis. Therefore, currently available methods for
clinical monitoring of blood glucose levels are based on the invasive (in vitro) methods.
The invasive method can be categorized into electrochemical methods [7,8] and optical
methods [9–21]. Many review papers [7,8] pointed out the advantages and challenges of the
electrochemical method for blood glucose concentration monitoring. The most important
issue with electrochemical methods is to reduce or eliminate calibration procedures while
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taking into account measurement accuracy to improve the convenience of measurement [7].
In contrast to electrochemical methods, optical methods [9–21] are measured non-contact.
There is no contact between the electrode and the test piece as in electrochemical measure-
ment, eliminating the calibration problems caused by contact measurement. In addition,
due to the diversity of optical measurement methods, the design of the sensor can measure
the concentration of the sample according to the change in the physical characteristics of
the sample (such as refractive index (RI), polarization state, optical rotation power, light
intensity, wavelength shift, etc.).

Lin [9] proposed a heterodyne refractometer to determine the refractive index and
chiral parameter of the various concentration of glucose solution. Based on its optical
configuration, when it is incident on the sample at critical angle, the phase difference
of the interference signal will be discontinuous, and then the RI and the corresponding
glucose concentration will be obtained. The results showed that the optimal resolution
of RI could achieve 10−5. Bhardwaj et al. [10] developed double tapered Mach–Zehnder
interferometer for RI measurement of glucose solution at different concentrations. Their
results showed that the minimum concentration variation of glucose solution was 2%.
Chiu et al. [11] developed a novel measurement method for small rotation power of
glucose solution. To control the azimuth angle of a half-wave plate, the rotation power
of glucose solution can be obtained. Their results showed that a wide measurement
range of glucose concentration and the resolution of the rotation power can be better than
1.6 × 10−5 ◦/mm. Upadhyay et al. [12] proposed a double D-shaped fiber Bragg grating
(FBG) for RI measurement of glucose concentration varied from 0% to 50%. Their results
indicated that the sensitivity of double D-shaped FBG was better than that of D-shaped
FBG, and the optimal sensitivity could reach 47.37 nm/RIU. Zhong et al. [13] proposed a
glucose sensor based on helical intermediate period fiber grating (HIPFG) structure. The
sensitivity of HIPEG glucose sensor was about 0.026 nm/(mg/mL) and the detection limit
can achieve 1 mg/mL. Wu [14] fabricated s-shaped long period fiber grating (LPFG) and
immobilized glucose oxidase (GOx) on the s-shaped LPFG surface for glucose concentration
measurement. The measurement range of glucose concentration was covered 0 wt%–1 wt%
with high linearity, and the sensitivity of Wu’s method could reach 6.229 dB/wt%. Azkune
et al. [15] modified polymer fiber surface with phenylboronic acid (PBA) and Alizarin Red
S(ARS) for glucose sensors. Based on the evanescent wave characteristics at the U-shaped
fiber/sample interface, the transmitted light will be related to the sample concentration.
Their method showed a detection limit of 0.1 M for glucose concentration. Hsu et al. [16]
developed a circular heterodyne polarimeter and fabricated a reusable enzymatic glucose
sensor for measuring glucose concentration. For glucose solutions, the repeatability and
resolution of the proposed system were better than 95% and 0.88 mg/dL, respectively.
The reusable glucose sensor could be reused consecutively 100 times for application, and
it provided a similar response efficiency. Badmos et al. [17] developed an enzymatic
long-period fiber grating (LPFG) glucose sensor. Based on LPFG’s dual sensing peaks,
their method provided two measurement ranges for glucose concentration. The optimal
linear measurement range was 0.1 mg/mL to 3.2 mg/mL with a detection wavelength of
1787 nm. Zhou et al. [18] modified 4-vinylphenylboronic acid (4-VPBA) on the surface of
the helical long-period grating (HLPG) for glucose sensors. The linear range of the glucose
concentration covered 0.18–3 mg/mL and preserved similar sensitivity over 3 weeks
of the sensor. Lee et al. [19] fabricated a glucose sensor by constructing a long-period
grating on a panda-type polarization maintaining (PM) fiber and immobilized GOx on the
surface. The results showed that the transmitted intensity of linear horizontal polarization
(LHP) was inversely proportional to the glucose concentration around the wavelength of
1548 nm. Compared to the results of LHP, the results of the linear vertical polarization
(LVP) exhibited redshift as glucose concentration increased around the wavelength of
1606 nm. Zhang et al. [20] developed an MSM-SPR sensor with the structure of multimode
fiber/single-mode fiber with surface plasmon resonance structure/multimode fiber for
glucose concentration measurement. MSM-SPR sensor combined with a glucose emzymatic
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reaction device consisting of GOx modified polystyrene (GOx-PS) and MnO2 can detect the
RI variation of gluconic acid at different glucose concentrations. Results showed that the
glucose enzymatic reaction device could be reused 10 times without significant difference.
Previous work [21] fabricated an enzymatic fiber sensor by immobilizing GOx on the core
surface of a single mode fiber (SMF) to measure the glucose concentration in human serum.
Results showed that the sensor could be reused 13 times within 1 week, and the theoretical
resolution could be better than 0.15 mg/dL.

To increase the number of applications of fiber type glucose sensor, this study opti-
mized the technology of GOx immobilized on the no-core fiber surface. Therefore, the new
glucose sensor can be reused nearly three times more than the sensor produced by the
previous work [21]. The glucose sensor had a single mode fiber (SMF)/enzymatic no-core
fiber/single mode fiber structure, and the results showed that the measurement sensitivity
was proportional to the length of the enzymatic no-core fiber. Two ends of the SMF adopted
FC type bare fiber adapter to easily replace the glucose sensor. Based on the optical configu-
ration of the proposed system, the phase variation could achieve a phase stability of 0.07◦ in
30 s. Therefore, theoretical resolutions were about 1.154 and 0.577 mg/dL for sensors with
lengths of 1 cm and 3 cm, respectively. These findings suggest that the proposed sensors
and measuring devices can serve as alternative systems for in vitro clinical examinations
and become green clinical diagnostic systems for long-term care centers in future.

2. Principles

Figure 1a shows the measurement setup of the proposed method. The heterodyne light
source was generated by an electro-optical modulator with 1k Hz modulation frequency.
The heterodyne light was guided into the enzymatic glucose sensor constructed with
enzymatic no-core fiber with single-mode fiber (SMF) spliced at both ends. The two ends of
the SMF are with FC type bare fiber adaptor. The diagram of the sensor structure is shown
in Figure 1b.

When light is incident into the enzymatic no-core fiber at an angle of θ1 through a
single-mode fiber, total internal reflection (TIR) will occur at the boundary between the
enzymatic no-core fiber and the test medium. Therefore, the phase shift between p- and s-
polarizations can be obtained and written as [22]

δ = δp − δs = 2tan−1


√

sin2θ2 − n2

tanθ2sinθ2

 (1)

where n = n3/n2 indicated the ratio between the refractive indices of no-core fiber (n2) and
test medium (n3); θ2 = 90◦ − θ1, which is shown in Figure 1c. Depending on the numerical
aperture (NA) of objective lens and the refractive index (n1) of SMF, the maximum value of
θ1 will be in the range of 4◦ to 9◦. Obviously, the light beam will exhibit multiple TIR in
no-core fiber and the number of TIRs can be expressed as

m =
L

2d · tanθ2
(2)

where L and d are the length and diameter of no-core fiber, respectively. Based on the Jones
calculation [23], the interference signal detected by detector (D) can be written as

It =
1
2
[1 + cos(ωt + mδ)] =

1
2
[1 + cos(ωt + φ)] (3)

The total phase shift (φ) can be obtained immediately by a lock-in amplifier with
phase-lock technology. When a sample is injected into the sensing area, glucose oxidase
(GOx) catalyzes the conversion of glucose to gluconic acid and hydrogen peroxide [24].
Thus, the total phase shift (φ) of TIR changes as the chemical reaction progresses, and the
heterodyne light carries this time-varying signal. Therefore, by measuring φ at different
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glucose concentrations, the calibration curve of phase versus glucose concentration can
be obtained.
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Figure 1. (a) Diagram of the experimental setup; (b) sensor structure; and (c) TIR phenomenon at 
boundary between no-core fiber and test medium. Figure 1. (a) Diagram of the experimental setup; (b) sensor structure; and (c) TIR phenomenon at
boundary between no-core fiber and test medium.

According to Equations (1) and (2), the relationship between the phase shift and
refractive index (RI) of test medium can be seen in Figure 2a; the number of TIR and
incident angle (θ1) can be seen in Figure 2b. Figure 2a shows that the phase shift is inversely
proportional to RI of the test medium, and the optimum variation of phase shift will be
approximated of 0.08◦ as θ1 = 5◦. Figure 2b shows that the TIR number is proportional to
the length of no-core fiber, and the longer the length of enzymatic no-core fiber (sensing
area), the more times of TIR.
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Figure 2. Theoretical simulation. (a) Phase shift vs. RI under various incident angle (θ1); (b) number
of TIR vs incident angle (θ1) under various length (L) of enzymatic no-core fiber.

3. Experimental Results
3.1. Sensor Fabrication

The enzymatic glucose sensor was constructed with enzymatic no-core fiber with
single-mode fiber (SMF). These fibers were purchased from commercially available manu-
factures where no-core fibers (Prime Optical Fiber Corporation, Hsinchu, Taiwan,
model:NCF125) and SMFs (Thorlabs Inc., Newton, NJ, USA, model: SM600) have a cladding
diameter of 125 µm. The numerical aperture of SMF is 0.1–0.14. The no-core fiber sensor
was treated with 1% (v/v) 3-(trimethoxysilyl)propyl aldehyde in absolute ethanol for 30 min
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at room temperature. After washing with ethanol for few times, the fiber sensor was dried
by N2 air gun, followed by heating at 100 ◦C for 45 min. To immobilize GOx on SiO2 with
covalent bonding via the amino linkage aldehyde group of fiber sensor surface, the modi-
fied surface was then covered with a 175 µg/mL GOx in 10 mM phosphate buffered saline
(PBS) solution at pH 7 for 1 h. Unreacted aldehyde groups were quenched by immersion
in 15 mM Tris buffer solution (pH 7.5) for 10 min at room temperature. The fabrication
procedure is shown in Figure 3.
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Figure 3. The fabrication procedures of enzymatic no-core fiber sensor.

After fabrication of the enzymatic no-core fiber sensor, the effectiveness of GOx on the
sensor surface will be verified using a standard validation method provided by the World
Health Organization, (WHO) [25]. Glucose present in the test solution will be oxidized by
GOx to form gluconic acid and hydrogen peroxide. Hydrogen peroxide will be converted
to water and oxygen by peroxidase (POD). The oxygen acceptor 4-4-aminophenazinone
absorbs oxygen and forms a pink chromogen together with phenol. Therefore, when the
sensor was placed in a solution containing glucose, POD, and 4-4-aminophenazone, the
activity of GOx on the sensor surface could be determined by the appearance or absence of
pink color. In addition, for the convenience of sensor replacement, the two ends of the SMF
are connected to the light source and detector with FC type bare fiber adaptor. As shown
in Figure 4, Figure 4a shows the photo of the actual enzymatic no-core fiber sensor, and
Figure 4b is the verification result of GOx activity. Figure 4c shows the reusable behavior by
consecutive chromogen test and the darker the pink color, the higher the enzyme activity.
Thus, the proposed sensor can be reused at least 30 times.
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3.2. Performance of the Proposed Method

Various concentrations of glucose were prepared to demonstrate the performance of
the proposed method. In this study, glucose solutions were prepared by dissolving glucose
anhydrous in DI (deionized) water, and the glucose concentration was within the range of
10–550 mg/dL. Figure 5 shows the phase–time response curves of the proposed sensor with
various lengths of enzymatic no-core fiber. As the sample was injected onto the sensing
area, GOx catalyzed glucose and changed the RI of test medium. Therefore, the total phase
shift varied as the reaction progressed. The results showed that the phase variation was
inversely proportional to the glucose concentration, and the reaction was terminated within
3 s. In general, the refractive index increases with the increase in glucose concentration.
The simulation results in Figure 2a show that as the refractive index increases, the phase
shift decreases. The experimental results are consistent with the theoretical predictions.

Figure 6 shows the results of consecutive tests of sensors with different lengths at
various glucose concentrations. The glucose concentration of the test sample is controlled
at 150 mg/dL and 450 mg/dL for the sensor with a length of 1 cm, and the glucose
concentration of the test sample for the sensor with a length of 3 cm is controlled at
450 mg/dL. A test sample was injected with a volume of 1 cc directly with a micropipette
and reacted with the sensor for 1–2 s. Next, the reacted liquid was aspirated out. In the
consecutive testing, DI water was not used to clean the sensor. Terminal phase deviations
can be caused by interference caused by improper aspiration of reactants, residual reactants
on the sensor surface, and short sampling time frame. To prevent interference, the injection
system can be replaced with an autosampler, which continuously injects sample and
deionized water to clean the sensor surface.
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Figure 5. Phase–time response curves of the proposed sensor with various lengths: (a) L = 1 cm;
(b) L = 3 cm.

In contrast to the consecutive testing, in a reliability test, the test sample reacted with
the sensor for 10 s, the reacted liquid was sucked out, and then the sensor was cleaned
twice with 10 cc of DI water. After each sensor has been used 10 times, it was replaced
with another new sensor for the next set of 10 experiments. The reliability evaluation was
performed by calculating the relative standard deviation (RSD) of 50 replicate experiments
for each glucose concentration in accordance with Clarke’s method [26].
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The evaluation results are shown in Figure 7, and the values in the region between
the red and blue lines indicate the measurement result within ±20% of the reference
concentration. The average RSD of the proposed sensors with lengths of 1 cm and 3 cm
were 9% and 6%, respectively. These results demonstrated that the proposed sensors
have good reliability and met the minimum requirement (±15%) for point-of-care devices
provided by US Food and Drug Administration (FDA) [27].
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Figure 8 indicates that the calibration curve measured of the proposed method with
various lengths of sensor. The symbols #, �, and I represent the average value of 10 mea-
sured data sets and the standard deviation of each concentration measured by the proposed
sensor with 1 cm and 3 cm long sensors, respectively. The slope of the calibration curve
indicates the sensitivity of the proposed method; the phase variation was approximately
−0.026◦ for 1 mg/dL for the measurement by the sensor length of 1 cm and −0.052◦ for
1 mg/dL for the measurement by the sensor length of 3 cm. The shaper slope indicates a
higher sensitivity, and obviously the sensor length of 3 cm provided higher sensitivity for
glucose concentration measurement. The results show that the linear measurement range
of the proposed method covers glucose concentrations from 10 to 550 mg/dL.
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4. Discussion

Resolution ∆C of the proposed method can be achieved by calculating the ratio of the
phase error |∆φ| of the proposed method to the slope S of the calibration curve, which is
expressed as

|∆C| =
∣∣∣∣∆φ

S

∣∣∣∣ (4)
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According to Equations (1) and (2), the phase error ∆φ is a function of length of
enzymatic no-core fiber and the ratio between the refractive indices of no-core fiber and
test medium, which can be derived and expressed as

∆φ = ∂φ(L, n)
∂L |∆L|+ ∂φ(L ,n)

∂n |∆n|

= δ
2dtanθ2

|∆L| − nLsinθ2

d((tanθ2sinθ2)
2+sin2θ2−n2)

√
sin2θ2−n2

|∆n|
(5)

where |∆L| and |∆n| are the errors of the length of enzymatic no-core fiber and the
ratio between the refractive indices of no-core fiber and test medium, respectively. The
reason for |∆L| may be that the length fails to be precisely controlled when cutting the
no-core fiber and |∆L| can be less than 2 mm. The source of |∆n| may be an improper
temperature control around the test sample and sensor, as well as laser wavelength stability.
Theoretically, within 1 ◦C of temperature change, |∆n| is less than 0.001. The simulation
result was shown in Figure 9a. When |∆L| is 1 mm and |∆n| is 0.001, |∆φ| is 0.03◦. If
|∆L| is controlled at 0.5 mm and the temperature is controlled within 0.5 ◦C, |∆n| will be
within 5 × 10−4, and therefore |∆φ| will be close to 0.01◦. With reference to the analysis of
Wu [28], the residual nonlinearity phase error was evaluated, and the results indicate that
phase error was less than 0.02◦, which is shown in Figure 9b. Based on the error analysis
and considering |∆L|, |∆n|, and residual nonlinearity phase error, the theoretical phase
error |∆φ| can be better than 0.03◦.

Unfortunately, imperfect temperature control of the solution, unexpected electronic
variations, and the residual nonlinearity periodic error of the measurement apparatus also
affected the phase error of the proposed method. The practical phase error of the proposed
method is indicated by evaluating the phase stability of the measurement system, and
the results are shown in Figure 9c. The practical phase error of the proposed system was
0.07◦ within 30 s. Based on the error analysis, the resolution of the proposed method can
be estimated using Equation (4), and it is summarized in Table 1. If only residual phase
error is considered as the phase error of the proposed system, the optimum resolution of
the glucose solution can reach 0.615 and 0.308 mg/dL for the sensor lengths of 1 cm and
3 cm, respectively. According to the concept of detection limit (DL) proposed by Barrios
et al. [29,30], |∆C| can be regarded as the DL of the proposed method. Therefore, for
glucose solution samples, the DL of the proposed method can be better than 3 mg/dL.
Interferences in blood samples (e.g., L-ascorbic acid, methylmalonic acid, glycine, urea, etc.)
may affect the accuracy of glucose concentration measurement. Wu et al. [31] evaluated
the effect of these interferents on an optical glucose sensor with a GOx sensing layer. Their
results showed a difference of less than 2.3% between the measurement of glucose concen-
tration in samples with and without interference. Therefore, those potential interferents
may not have a significant impact on the accuracy of the proposed sensor.

Table 2 summarizes the performance comparison results between the proposed sensor
and the related work cited in Section 1. The proposed method yields a reusable glucose
sensor with acceptable detection limits, fast response time, and wide measurement range.

Table 1. The resolution of the proposed method with different sensor length.

L |S| (◦/(mg/dL))
Theoretical Practical

∆φ (◦) |∆C| (mg/dL) ∆φ (◦) |∆C| (mg/dL)

1 cm 0.026
0.03

1.154
0.07

2.692
3 cm 0.052 0.577 1.346
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Table 2. Performance comparison of relevant methods.

Ref. Detection
Limit Linear Range Response Time Reusability Method Enzyme

Adopted

[9] Better than 50% X X X Polarimeter X

[10] 2% 0%–10% X X
Double tapped
Mach-Zehnder
interferometer

X

[11] Better than
10 mg/dL 10–1000 mg/dL X X Polarimeter X

[12] 10% 0%–50% X X Double D-shaped FBG X

[13] 1 mg/mL 0.02–200
mg/mL X X HIPFG X

[14] 0.25 wt% 0 wt%–1 wt% X X S-shaped LPFG GOx
[15] 0.1 M X 10 min X U-shaped fiber PBA-ARS
[16] 1.41 mg/dL 1–450 mg/dL <10 s >100 times Circular polarimeter GOx
[17] X 0.1–3.2 mg/mL X X LPFG GOx
[18] 0.037 mg/mL 0.18–3 mg/mL X X HLPG 4-VPBA
[19] 5 mM 5–25 mM X X PM-LPFG GOx
[20] X 20–400 mg/dL ~8 min 10 times SPR fiber GOx
[21] 0.139 mg/dL SRM 965a [32] <2 s 13 times SMF GOx

This work 1.346 mg/dL 10–550 mg/dL <3 s 30 times
No-core fiber with

heterodyne
interferometry

GOx

5. Conclusions

This work demonstrates the feasibility of an enzymatic glucose sensor and integrates
into a heterodyne interferometry for measuring the glucose concentration. Experimental
results indicate that the resolution of the proposed sensor is strongly related to the length
of the enzymatic sensor. The resolution increases with increasing sensor length, and the
optimum resolution is approximately 0.577 mg/dL. Moreover, the limit of detection of
the proposed method is approximately 1.346 mg/dL. This work further demonstrates the
repeatability of the proposed sensor, maintaining an acceptable phase–time response under
10 consecutive uses for sensors of different lengths. Importantly, the proposed method is
highly promising for its repeatability and reliability required by the FDA. Based on these
findings, a reusable and reliable enzymatic sensor was fabricated and integrated into an
apparatus with high sensitivity and a high-resolution system for glucose concentration
measurements. We hope that the proposed system can be used as a green clinical diagnostic
system in long-term care centers.
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